In odd slot, source S transmits its symbol to D and to both relays A and B. The received signal at D is given by Where n is the time slot,  and are the data symbols of PU and SU. the amplification factor   satisfying the power constraint expressed as below The received signal at relays A and B during nth slot isSimilarly in even time slot, the received signal at D is    The received signal at relays A and B during (n-1) th slot is  IRI mitigation – ZF SIC                  In this section, we propose ZF-SIC for interference cancellation at D. The extraction of PU symbols considering the received signal at D in time slot t1 and t2 is given byIn t1,In t2,Extracting one of the symbols with better channel gain  from received signal , we obtain the other symbol S2 by iteratively subtracting with . So, we haveFinally, S2 is obtained after equalization by zero forcing method as given below where the equalized symbol Optimum power allocation In this section, power is allocated to secondary relays appropriately to satisfy the interference constraint on PU destination and also for guaranteed QOS for PU.

BER Minimization                       For optimum power allocation in t2 and t3, the sum of individual powers of PU (Ps) and SU (PA and PB) should be equal to the total power constraint Ptotal. In t2 and t3, optimal power constraint is as follows The individual powers of the transmitters in the proposed model is found as below+                                                                 + Then, the individual powers of   ,   and   is obtained as PS=0.657W, PA=0.342W for t2 and PS=0.686W, PB =0.314W for t3.

Rate Maximization                 The maximum achievable rate in bits/sec/hertz based on the proposed scheme SENT after MRC is given by where  is rate at D through direct link communication given by is the SNR of direct link.  and  is the rate achieved through relay A and B at D and ,, are the MRC constants.      where   is the SNR between source S to relay A and is the SNR between A and destination D.Similarly for SU, the rate is expressed as  where   is the SNR between A and B.           Relay based routing performanceFig.6 Number of SU nodes Vs PDRComputed rates are used for SU data transmission and it is inferred from Fig.

6 that as number of relay nodes increases, PDR performance is improved by 24% when compared to CAODV. 

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team