The following diagrams show how many winning lines there are in the grid, with each coloured line representing 1 winning line.

There are 24 winning horizontal winning lines as shown in the diagram opposite.There are 21 vertical winning lines in a 7×6 grid as shown opposite.There are 24 diagonal winning lines in a 7×6 grid. As diagonal lines go both ways I multiplied the number of lines shown by 2 in order to achieve the correct result.

I felt this was the easiest method to use as to draw 2 sets of lines on one grid would be very confusing, and to draw 2 grids would have been very time consuming.I am now going to investigate if there are patterns of winning lines within grids. In order to work systematically I am going to begin my investigation with square grids as this will involve using only one variable, and I will gradually complicate matters when moving onto rectangles and the use of 2 variables.Square GridsI am now going to investigate winning lines in square grids.I am going to put my results in a table to enable me to spot any patterns that occur.

Winning Linesn (grid size)HorizontalVerticalDiagonal44425101086181818As we can see horizontal and vertical winning lines are the same in square grids.Horizontal and Vertical RulesThe first difference is not a constant, therefore we do not have a linear sequence. The fact that the second difference is 2, suggests that the rule must contain n�.Rule: n(n-3)I predict that in grid size 7×7, the horizontal and vertical number of winning lines will be 28.In order to check my prediction we can draw the grid and insert the winning lines:Number of winning lines = 28Rule is correct.Justifying the Rule.Each winning line has 1 starting square followed by 3 other squares (thus 4). If you take n (the grid size) and subtract 3 this gives you the number of winning lines for one row.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

If we then multiply this number by n, this gives you the total number of winning horizontal or vertical lines.Diagonal RuleIf we refer back to our winning lines table, we once again find that the first difference is not a constant. I also know that whatever rule I find will be multiplied by 2 to account for both diagonal directions.Rule: 2(n-3)�I predict that in grid size 7×7 the number of diagonal winning lines will be 32.In order to check my prediction I will have to draw out the 7×7 grid.The number of winning lines shown opposite is 16, however when multiplied by 2 (thus accounting for the fact that diagonal lines can go both ways) we reach the predicted answer of 32. So, rule is correct.Justifying the Rule2(n-3)�No winning lines can be put in these shaded areas for the simple fact that it is 3 squares wide and a line lasting 4 squares cannot fit in there.

So, if you multiply n-3 by n-3 you get the number of winning line starting squares, therefore the number of winning lines.Rectangular GridsI am now going to extend my investigation by exploring the possibilities of rectangles.I have put my results in a table to enable me to spot patterns.n = horizontal grid size m = vertical grid sizeWinning LinesmnHorizontalVerticalDiagonal651215127514201685162520I kept 1 of the variables (n) the same.

This is so I can work systematically and spot the patterns that occur.Horizontal RuleThe rule for horizontal winning lines in square grids is n(n-3). As already explained this is because there is the same number of winning lines in each row (n-3), and it is multiplied by n as that is the number of rows there are. So, it is only logical that in rectangles there will still be the same number of winning lines in every row, (n-3), and still be multiplied by the number of rows there are, this time m.Rule: m(n-3)I predict that in grid size 5×9 the number of horizontal winning lines will be 18.

I will now check this prediction.Number of winning lines = 18Rule is correctVertical RuleAs the rule for vertical was the same as horizontal in square grids I believe that the rule will be similar in rectangular grids. As it is vertical, n will now be the number of rows and (m-3) will equal the number of winning lines in a column.Rule: n(m-3)I predict that in a 5×9 grid the number of winning lines will be 30Number of vertical winning lines = 30Rule correctJustifying Horizontal and Vertical RulesAs already explained for each winning line there is one starting square followed by 3 squares.

As there is the same number of winning lines per row multiplying by the number of rows, m, gives you the total horizontal winning lines. It is the same for vertical winning lines, only in that case the number of winning lines per column is m-3, and you multiply it by the number of columns there are, n.Diagonal RuleAs the rules for horizontal and vertical winning lines in rectangular grids worked on the same basis as horizontal and vertical winning lines in square grids, I’m going to assume that the diagonal rule for rectangular grids will work in the same way as the diagonal rule for square grids. So, the rule should be, (m-3)(n-3), multiplied by 2 to account for both diagonal directions.I predict that in a 5×9 grid the number of diagonal inning lines will be 24 altogether.I will now check this by drawing out the 5×9 grid.

Number of winning lines shown is 12, but when multiplied by 2 it equals the predicted 24 winning lines.Justifying Diagonal Rule2(m-3)(n-3)As with square grids the connect 4 winning lines cannot fit into the first 3 squares. So, if you multiply m-3 by n-3 you get the number of winning lines. You must also multiply by 2 to account for the fact that diagonal lines can go from right to left and from left to right.Connect AnyI am now going to investigate what these rules would be if they were connect any, not just connect 4.I predict that in the place of the ‘-3’, in all of the rules, there will be c(connect number) -1. This is because each winning line is composed of one starting square followed on by the number of squares remaining in the connect number.

So, the rules for connect any in rectangles would be:Horizontal winning lines : m(n-(c-1))Vertical winning lines : n(m-(c-1))Diagonal winning lines : 2(m-(c-1))(n-(c-1))The rule for total winning lines, connect any in a rectangle would be:(m-(c-1))n + (n-(c-1))m + 2(n-(c-1))(m-(c-1))I will now check the total rule.I predict that for connect 3, in a 4×3 grid, the number of winning lines would be 14 altogether.I will now draw out the grids to check my prediction.There are 14 winning lines altogether, therefore my rules are correct.Justifying ‘c-1’As already explained each winning line has one starting square, so you subtract this to get the number of squares which need to be taken away in the rules.

To get the total rule I added all of the other rules together.