7       M. F. Sulaima, A. Faizal, M. H.Jali, W. Daud, W. M.

Bukhari, M. Nasir, M. Na’im, and M. F. Baharom, “Afeasibility study of internal and external based system for pipeline leakdetection in upstream petroleum industry,” Australian Journal of Basic andApplied Sciences, pp. 204– 210, 2014.

6       M. Golmohamadi, “Pipeline leakdetection,” 20155       J. Zhang, A. Hoffman, K.Murphy, J. Lewis, M. Twomey et al.

, “Review of pipeline leak detectiontechnologies,” in PSIG Annual Meeting. Pipeline Simulation Interest Group,2013.4       T. R. Sheltami, A. Bala, and E.M.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

Shakshuki, “Wireless sensor networks for leak detection in pipelines: asurvey,” Journal of Ambient Intelligence and Humanized Computing, vol. 7, no.3, pp. 347–356, 2016.3       T. Zhang, Y.

Tan, X. Zhang, andJ. Zhao, “A novel hybrid technique for leak detection and location in straightpipelines,” Journal of Loss Prevention in the Process Industries, vol. 35, pp.

157–168, 2015.2       T. El-Shiekh, “Leak detectionmethods in transmission pipelines,” Energy Sources, Part A: Recovery,Utilization, and Environmental Effects, vol.

32, no. 8, pp. 715–726, 20101       P.-S.

Murvay and I. Silea, “Asurvey on gas leak detection and localization techniques,” Journal of LossPrevention in the Process Industries, vol. 25, no.

6, pp. 966–973, 2012References   In thispaper, in order to guarantee a suitable water pipeline monitoring in thisproject, we have implemented hybrid technique that combines the RTTM method forreal-time leak detection with the wave propagation method for leaklocalization. To evaluate the localization method, a location error iscalculated to test the localization accuracy which depends on the distance fromthe pipeline inlet. The obtained results are acceptable.

However, in the nextwork, we will enhance the location accuracy by combining the implementedlocalization method with an intelligent algorithm allowing to reinforce itsresults and to be certain about the leak position IV. Conclusion  The pressure near the valve undergoes apressure surge (?P1) as the dynamic pressure of the ?uid converts tohydrostatic pressure. A positive pressure wave is generated, and travelsupstream along the pipeline. Arriving at the leak point, a sudden drop by ?value occurs in the pressure. A negative pressure wave is produced and startsto propagate downstream. A Pressure Recorder (PR) collects the pressure data. B. Leak Localization approach     Fig.

2: Water Distribution System  • Leak location: Once the leak isidenti?ed, the WPM is employed to locate the leak point.. • Leak Detection: RTTM  method: The pressure-?ow pro?le of thepipeline is calculated based on the measurements of the pipeline inlet andoutlet. Substituting the collected measurements into a mathematical model, thepredicted operating parameters can be evaluated by employing the Method ofCharacteristics (MOC) . Preliminary leak detection is considered by comparingthe predicted modelled values to the measured values. WSNi system isResponsible for collecting monitored water pressure and ?ow rate parameters bythe use of autonomous sensors. Firstly, the segment i of pipeline is dividedinto equal segments and sensor nodes are placed in each segment ends. Then,hierarchical WSN architecture is implemented where sensors are grouped intoclusters.

Each cluster head transmits the data to a Base Station (BSi) whichwill be analysed by the RCC to recognize the presence of the leak and itsposition. Hybrid method is implemented as following:The global architecture isshown in Fig. 1. It is divided into two sub-systems: WSN system and RemoteControl Centre (RCC). For each segment i of the pipeline, A.      global architecture III. PLDS ARCHITECTURE.

Thus, unlessthe threshold values are adapted, high false alarm rates will be recordedduring transient periods of the pipeline. Moreover, unless a localizationtechnique is attached to the method, it cannot localize the actual location ofthe leak on its own.The mass balance method for leakdetection is straightforward (Burgmayer and Durham 2000; Martins and Seleghim2010). It is based on the principle of mass conservation. The existence of leakcauses an unbalance between the output and input mass ?ow rate as well as theline pack variable rate (Liou 1996; Parry et al. 1992). This is variable thatde?nes the actual amount of gas in a pipeline or distribution system.

A leakalarm is raised once the difference between the volume of ?uid entering asection of the pipeline and the volume of the ?uid leaving the section exceedssome pre-set threshold. (Liu 2008) presented a detailed theory and theimplementation issues that are encountered in this method. In their work, theyfurther pointed out that the volume or mass can be obtained by using readingsof commonly used process variables such as temperature, pressure and ?ow rate.(Rougier 2005) presented a hybrid mass balance method, which incorporatesprobabilistic method to the mass balance method. The main drawback of thismethod is that the probabilistic method requires a substantial amount ofcomputational power.

One of the advantages of the mass balance method howeveris the ease with which it can be implemented on existing pipeline infrastructure.It is also able to rely on existing instrumentation already available on thepipeline; thus, resulting in low cost implementation (Murvay and Silea 2012;Wan et al. 2011).

However, its performance relies on the size of the leak,frequency at which balance measurements are obtained as well as on the overallaccuracy of measuring instruments. Another limitation of the mass balancemethod is its inability to detect small leak in real-time. Thus, resulting inloss of signi?cant amount of ?uid before an alarm is raised. A furtherlimitation is that the mass balance method easily affected by randomdisturbances around the pipeline as well as the pipe dynamics.              This method depends on pipe ?owmodels developed to employing equations such as: conservation of momentum, massand energy as well as the equation of state of the ?uid. The presence ofleakage is determined by the estimated value and measured value of the ?ow.Continuous monitoring noise levels and transient events minimize false alarmrate.

Billmann and Isermann (1987) designed an observer with frictionadaptation that in the event of leakage it generates a different output fromone obtained from measurements. Thus, from this difference leakage can bedetected.  A.   Real time transient modelling II .leak detectiontechnologiescombining the RTTM (Real TimeMonitoring System Method) 4 and the Wave Propagation Method (WPM)  for water leak monitoring and pipe modeling.The rest of paper is organized as follows: section II reviews the previousimplemented hybrid pipeline leak detection methods. Section III details anddescribes the water pipeline model.

In section IV, we detail the PLDSarchitecture. Section V illustrates the leak detection methodology. Finally,section VII concludes this paper.we focus on sensing the continuouslywater parameters (pressure and ?ow rate) to detect the presence of the leak andto locate its position. Thus, the originality of our contribution is to deploya hybrid methodWaterdistribution is generally installed through underground pipes. Monitoring theunderground water pipelines is more difficult than monitoring the waterpipelines located on the ground in open space.

This situation will cause apermanent loss if there is a disturbance in the pipeline such as leakage. Leaksin pipes can be caused by several factors, such as the pipe’s age, improperinstallation, and natural disasters. Therefore, a solution is required todetect and to determine the location of the damage when there is a leak.Wireless Sensor Network (WSN) is considered as a reliable solution for PipelineLeak Detection Systems (PLDS) to supervise pipeline and to detect and localizeleaks. I.

   INTRODUCTION Keywords—Wireless Sensor Network, Pipeline monitoring, Leak, Hybridtechnique, Detection, Localization,  Abstract— Themonitoring of leaks in pipelines is an important issue to be addressed byresearchers and the public. This is due the fact that they can have a greatimpact both economically and environmentally. In recent years, the effect ofleakages of pipelines carrying oil, gas and nuclear ?uids have posed a threaton humans as well as marine life. This paper provides a survey of recentmethods of detecting pipeline leaks with special focus on Real Time TransientModeling and Wave Propagation Method is implemented to detect and locate theposition of the leak in a water pipeline. A mathematical model is carried outto solve the transient based leak detection model and different scenarios aredeveloped to estimate the relationship between the pressure ?uctuation and leakposition. The obtained results approve the potentiality of the proposedtechnique